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Autonomous Position and Velocity
Determination in Interplanetary Space

John D. Vedder*
McDonnell Douglas Space Systems Company,
Houston, Texas 77062

Introduction

HE purpose of this Note is to describe briefly a new

method for autonomously estimating the position and
velocity state vector of an interplanetary spacecraft. This
method is based solely on a small number of sequential, time-
tagged sightings of known objects with onboard optical equip-
ment. These objects consist of the planets or their satellites and
the brighter asteroids. The only qualifications for these objects
are that they must be observable with onboard instrumenta-
tion, such as a star tracker; their ephemerides must be known
onboard; and they must not be pairwise coplanar with the
spacecraft’s trajectory during the observation interval.

It is known that simultaneous sightings of two such objects
against their stellar backgrounds can be used to determine the
observer’s position in interplanetary space, and detailed analy-
ses of this process are available.!> However, this process has
some important limitations, including the following: sightings
should ideally be simultaneous, necessitating multiple instru-
ments and observers; no direct information about velocity is
obtained; and any error in either of the two sightings will have
a large effect on the result. Geometrically, this method fixes
the observer’s position as the point determined by the intersec-
tion of two straight lines in space.

The new method proposed here requires four sequential,
time-tagged sightings of such objects to determine four lines in
space. The direction of each line is extracted from the object’s
location against its observed stellar background. Knowing
both this direction vector and the object’s location (from its
known ephemeris) defines the straight line in space. The ob-
server’s trajectory during the sighting interval is then approxi-
mated by the straight line that intersects each of the four
known lines; actually two such solutions exist,’ one represent-
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ing the actual trajectory and the other representing a spurious
trajectory solution. Figure 1 illustrates the relevant geometry;
however, the angular extent of the observer’s trajectory during
the sightings is greatly exaggerated for illustrative clarity.
Knowing (in an ecliptic heliocentric coordinate system) both
the equation of the straight line trajectory approximation and
four time points on this line is sufficient to estimate the com-
plete state vector. The direction of the straight line defines the
direction of the velocity vector. The four time points on the
line define estimates of the position vector at these times and
thereby also define three estimates of the magnitude of the
velocity vector. These multiple estimates can also be judi-
ciously combined in various ways to produce a more accurate
state vector estimate at a single time within the overall observa-
tion interval.

Analysis

Turning now to an analytical discussion of the problem of
determining the equation of the straight line trajectory approx-
imation, we note that any straight line in space can be repre-
sented as the intersection of two planes passing through the
line. Hence each of the four lines (k =1, 2, 3, 4) representing
the four sightings can be represented by a pair of plane equa-
tions, such as

X + yap +an=0
Va3 + 2z +a=0 ¢y

where all of the coefficients are known and where, for conve-
nience and without loss of generality, the planes are chosen so
that as few coefficients as possible are nonvanishing. Clearly,
Eq. (1) can also be interpreted as the projections of a line in
space into the xy and yz planes; alternatively, the projections
in the xy and xz planes or those in the yz and xz planes could
be used if desired.

Each of four (i.e., k=1, 2, 3, 4) successive pairs of plane
equations (1) and (2) represents a single line passing through
both the observer and the object sighted. Each of these four
lines must intersect the assumed trajectory line

x+yo+c¢c;=0
yC3+Z+C'4=O (2)

where in this case the {c¢;} represents the four unknown coef-
ficients of the trajectory line.

straight line
trajectory solution

to planet #4

to planet #2

to planet #3

to planet #1

observer’s actual
trajectory

Fig.1 Conceptual geometry of observations, with actual and com-
puted trajectories.

The condition that each line [Eq. (1)] must intersect the line
[Eq. (2)] in a point imples that the determinant of their coeffi-
cients must vanish in each case, i.e.,

1 an 0 (2579
0 a 1 a
"3 “l <o k=1,2,3,4 ®?)
1 ¢ 0 ¢
0 C3 1 Cy

Evaluating Eq. (3) yields
ar(Ca—ara) + apa(@rs — C3) — QraCa + ApaCy

= C1C4 — C2C3 k= 1,2,3,4 (4)
These four equations must be solved for the four unknown
¢; to obtain the equation of the straight line representing the
trajectory.

Rearranging the terms of Eq. (4) results in the matrix equa-
tion

ayy —aiz —dp ap C, —da;1Q14+ Qa3

Uy —@3 —axn ) |C2 — )04+ A0
.+.

a3y —ay —dadyp a4z C3 — a3 a34+ a303;

A —aQ43 —ag 4y Cq —041Q44+ Ag2043

C1Cyp— CrC3
C1Cy— C2C3
= )
C1C4—C2C3
C1C4—CrC3
which may be rewritten in symbolic matrix form as
Ac+b=g (6)

where A4 is the (4 xX4) matrix of coefficients in Eq. (5), ¢ the
(4 x 1) matrix of cin Eq. (5), and b the (4 X 1) matrix of bilinear
coefficients on the left side of Eq. (5). In addition, g is the
(4 x 1) matrix in Eq. (5) whose individual scalar elements g are
identical, each equaling (c,c;—Cy¢3).

Solving Eq. (6) for ¢, we obtain

c=A"'g-A"'b=A"Yg-b) @)

although the {¢;} are implicit in g as well as explicit on the left-
hand side of Eq. (7). From Eq. (7), however, it is possible to
obtain a single quadratic equation whose two solutions can be
used to obtain the two possible solutions for the {c¢;}. This
quadratic equation is obtained from the definition of the scalar
elements of g given previously, i.e.,

8 =C1C4— €203 (8)

by substituting the ¢; obtained from Eq. (7) into the right-hand
side of Eq. (8). It is then possible to solve for the two possible
values of g, since all other quantities in the equation are
known. Knowing the two g, the two possible sets of {c;} are
obtained from Eq. (7). And given the two {c;}, the straight
line trajectories are defined by Eq. (2). Thus, the equations for
both the true and the spurious straight line trajectories have
been explicitly obtained.

The solution just obtained is based on four independent,
sequential sightings, and this is the minimum number re-
quired. However, if more than four sightings can be made, the



J. GUIDANCE, VOL. 16, NO. 4: ENGINEERING NOTES 799

solution given previously can straightforwardly be generalized
to incorporate any number of additional sightings. These ma-
trices become larger, and the system of equations becomes
overdetermined. But optimal solutions can be obtained by re-
placing the ordinary inverse matrix in Eq. (7) with the Moore-
Penrose pseudo-inverse.

Discussion

Although the solution just described is valid in the error-free
case, this does not assure the method’s usefulness in the real
world. Obviously, the method’s sensitivity to observational
and other errors must be closely examined before drawing any
conclusions about its usefulness. Another possible limitation
stems from the fact that the major objects of the solar system
are almost all near the ecliptic plane: if both the trajectory and
the observed objects were all a single plane, the method would
be invalid since no trajectory would be determined. Thus,
being in proximity to a geometric degeneracy may increase the
error sensitivity, although this would be mitigated if sightings
of some objects, such as high-inclination asteroids, were used.
In addition, the accuracy of the solution as a function of the
angular distribution (with respect to the observer) of the four
observed objects should be examined: better results should be
obtained when their directions are spread out rather than con-
centrated.

Distinguishing between the true and spurious trajectory so-
lutions is usually easy to do. However, in some cases the two

solutions can be close to each other, and having a reliable
means of distinguishing them in all cases is therefore highly
desirable.

If, as appears likely, it is possible to cope with a considerable
degree of actual trajectory curvature without excessively de-
grading accuracy, then the application of the method to auton-
omous navigation while in orbit around a planet may be feasi-
ble. At any rate, the method’s accuracy as a function of
trajectory curvature during the overall observation interval
should be investigated.

Summary

A new method for autonomously determining an observer’s
state vector in deep space by optical means has been described.
Although the method works in the error-free case, its useful-
ness in the presence of errors has not yet been established.
Further investigation of the method is warranted to character-
ize its potential more fully.
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